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ABSTRACT
In this feasibility study, we demonstrate the use of a factor-
graph-based probabilistic graphical model approach to pro-
cess longitudinal data derived from a population’s electronic
health records (EHR). Processing of EHR allows for fore-
casting patient-specific health complications and inference of
population-level statistics on several epidemiological factors.
As a case-study, we provide preliminary results and demon-
strate feasibility of our approach by processing the EHR of a
diabetic cohort in Singapore. Our model passes the feasibil-
ity test as we are able to forecast a series of health complica-
tions of a new patient based on the factor functions inferred
from EHR of 100 diabetic patients spanning 10-years. This
forecast gives both the caregivers and the patient a better
view of the patient’s health in the coming years and increases
patient’s motivation to stay healthy and conform to medi-
cation plan. Furthermore, our approach informs commonly
occurring health complications in the population that war-
rant hospital readmissions, which helps a physician/clinician
in decide when to intervene to avoid complications in order
to improve the patient’s quality of life and minimize the cost
of care.

1. INTRODUCTION
This work uses a factor-graph-based probabilistic graph-

ical model to analyze longitudinal data presented by elec-
tronic health records (EHR) to forecast a series of future
health complications that might warrant hospital readmis-
sion. The choice of factor graphs is driven by their abil-
ity to provide a compact expressive representation of ran-
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dom variables and can subsume both Bayesian networks and
Markov random fields (MRFs) [4, 8]. Furthermore, factor
functions learned from the data facilitate efficient mecha-
nisms to forecast future events. Although factor graphs
have been pursued in information-theoretical settings, re-
cent work has shown that factor graphs can also be used in
continuous monitoring of cyber-physical systems [3].

The EHR comprise details pertaining to a patient’s visit
to a health care provider [1]. The primary contents of the
EHR include demographic information (e.g., age, gender,
race, marital status), epidemiological information (e.g., dis-
ease exposure), diagnosis history, laboratory tests and re-
sults, drug prescriptions, and clinicians’ notes. The nature
of the data in EHR can be structured or unstructured. For
example, structured data might include age, gender, drug
name and drug dosages; and unstructured data might in-
clude radiology, microbiology, and histology reports as well
as a clinician’s text inputs.

This work is motivated by the need to predict/forecast
a diabetic patient’s short-term post-surgical health compli-
cations. Type II Diabetes (T2DM) is a major chronic dis-
ease globally, but especially in Asia. T2DM patients have
increased risk of post-operative complications due to pre-
existing chronic diseases and the immunosuppressive effects
of diabetes. While doctors are able to provide value judg-
ments on a patient’s ability to recover from surgery and can
implement preemptive intervention such as prophylactic an-
tibiotics, they are unable to accurately predict which pa-
tients are likely to suffer short-term complications (within
30 days) due to the interaction of preexisting chronic dis-
eases and surgical factors. The ability to accurately pre-
dict outcomes of surgery (even if performed using surgical
robots) based on multiple features of patients and details
of operations to optimize perioperative care in diabetic pa-
tients would represent a significant advance in the care of
these patients. In particular, the prevention of readmissions
secondary to post-operative complications would represent
a significant reduction in patient morbidity as well as cost
savings to the hospital. Furthermore, currently it is not pos-
sible either to make long-term forecast of health conditions
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that will warrant readmissions and surgical interventions,
or to query population-wide comorbids (simultaneously pre-
sented health conditions) that contribute to readmissions
(including readmissions within 30 days).

Towards that end, by demonstrating the use of factor-
graphs embodied in a tool, SINGA-DRAGN (Singapore Di-
abetes Readmission Graphical Network), this work makes
the following key contributions:

1. It demonstrates our ability to forecast ten test pa-
tients’ future health complications and their expected
times to hospital readmission given their current co-
morbids. The forecast uses the factor functions in-
ferred from EHR spanning 10 years of 100 diabetic
patients who have undergone surgeries at the National
University Hospital, Singapore. As an example, for
diverticulosis as current diagnosis in test patients, we
show that we are able to forecast accurately their fu-
ture complications.

2. We provide a technique that can use the most highly
weighted factor functions to facilitate the identification
of common comorbids warranting readmission to the
hospital within 30 days.

2. RELATED WORK AND ANALYSIS CHAL-
LENGES

Current EHR analyses have largely focused on 1. inferring
comorbids (simultaneous presence of multiple conditions) as-
sociated with specific background health conditions/diagnoses [12];
2. early detection of specific events (for example, heart fail-
ure, atrial fibrillation and/or atrial flutter, tumor relapse) [6,
11,13,14]; 3. recommending therapeutic options [9]; or 4. pre-
dicting adverse drug events (ADE) [5]. All these existing
analyses use diagnoses codes (ICD-9, ICD-10) or, diagnoses

descriptions, or discharge codes associated with events/diagnoses
prior to specific events.

That leads to two key observations both of which reveal
shortcomings in the context of this work.

1. If the analyses are customized for a single class of
health problems, they alone might not be sufficient
in a large multi-speciality hospital setting. A physi-
cian might be interested in information beyond predic-
tion of specific health condition such as possible down-
stream health effects as patients continue to age.

2. To predict specific health events/conditions, the analy-
ses first identify patterns/trajectories of diagnoses that
lead to the event of interest. Then they train classi-
fiers, such as neural networks or random forests, which
help identify important features in addition to mak-
ing predictions. Prediction based on trained patterns
from high-frequency events implicitly assumes causal-
ity of observed patterns of diagnoses. However, this
approach will overlook patterns of rare but important
events if their occurrence is very scarce in the training
data, potentially leading to false or missed predictions.

Key challenges in analyzing the EHR data are as follows,

1. A current health complication in an individual could
be a manifestation of several other current and past
complications. For example, a current complication
such as chronic renal failure might have resulted from

early-stage renal failure (ESRF) in the past and may
be an outcome of type II diabetes as a background dis-
ease. On the other hand, renal failure could be caused
by other antecedent conditions, such as hypertension,
and might not progress to chronic renal failure. Hence
a robust probabilistic model is required in order to es-
timate the likelihood that any given individual will de-
velop a disease, given his/her medical history relative
to a particular population.

2. With longitudinal clinical data alone, identified dis-
ease associations do not imply causality. Through the
availability of population-level clinical data, it is hoped
that such associations will capture trends that warrant
investigation through a clinical trial or from additional
data, such as genomic data. For example, studies have
shown a higher incidence of cancer in type I and type
II diabetics [7,10]. However, that does not imply that
cancer observed in diabetic patients is caused by dia-
betes. Indeed, there could be other genetic predisposi-
tions for cancer in such patients, which may be eluci-
dated only if other data, such as genetic information,
is made available.

3. A predictive model must be able to distinguish re-
peat diagnoses and complications to avoid spurious
outcomes as a result of administrative or syntax-related
repetitions. For example, a patient might appear to
have multiple admission events for the same diagno-
sis because of documentation requirements, but the
model should recognize them as a single episode of that
diagnosis. For another example, an individual might
be admitted to the hospital for fever several times in
their lifetime, but the causes and contexts of the fevers
may be different. Furthermore, several other complica-
tions might be driving the fevers and each combination
of such complications in the context of fever must be
learned from the population’s EHR data.

Our work addresses the shortcomings of existing EHR
analyses in the following ways.

1. To the best of our knowledge, our factor-graph based
graphical model-based tool is the first of its kind that
can be trained on all combinations of diagnoses ob-
served in a population. By design, we are able to pro-
vide a global view of an individual’s health by forecast-
ing future health complications with current comorbids
(diagnoses) as inputs.

2. We track every combination of comorbids associated
with a current diagnosis that lead to different sets of
comorbids of the next diagnosis, embodied in what we
call factor functions. We then rank the likelihood that
these factor functions will be associated with specific
combinations of current comorbids to determine the
most common population-wide combinations of comor-
bids.

3. We identify every combination of comorbids associated
with current diagnoses that act as precursors to sub-
sequent diagnoses that warranted hospital readmission
within 30 days.

4. Because we rank every combination of comorbids ob-
served in a population, we are now able to provide
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population-level statistics of all prevailing health con-
ditions and common complications associated with hos-
pital readmissions.

3. DATA
The data were derived from a longitudinal inpatient dataset

comprising approximately 500, 000 medical records, includ-
ing lab and radiology reports, emergency department notes,
prescribed and dispensed medications, surgical notes, and
discharge summaries. It is a National Healthcare Group
(NHG) Domain Specific Review Board (DSRB) approved
database and resides in NUH servers and workstations gov-
erned by institutional data policies.

Records of 11, 000 unique T2DM patients who underwent
surgery at NUH over a period of 10 years were extracted.
Diabetic surgical patients were identified according to the
multiple text permutations of diabetes diagnoses and further
stratified according the diabetic subtype (e.g., gestational
diabetes). Each record contains primary (raw) data such
as anonymized demographic information (nationality, race,
age, gender, blood type), the condition in which the patient
was admitted (heart rate, sugar levels, weight, etc.), emer-
gency admission notes, lab report information (blood tests,
urine analysis, etc.), surgical notes (type of surgery), pa-
tient discharge summaries, and medications prescribed and
dispensed. Secondary (processed) data include patient con-
formance (whether the patient conforms to the treatment
prescribed and manages sugar levels), time sequence of ad-
mission diagnoses, and so on. If we were to treat each of
these labels in the data as a feature, the dataset would have
about 200 features in total.

3.1 Data Format
The data are presented in an XML file format provided

by the database software engineered by Oracle. This is the
native enterprise data storage format, and significant pro-
cessing is required to transform the data into analyzable
data. The dataset is presented as a compressed dump file
approximately 2.5 Tb in size divided into 9 semantic groups
in separate databases.

3.2 Data Transformation
Each attribute in the medical record is a container in

the XML file. Using a standard XML to .CSV conversion
software, we extracted and flattened the files. In this ini-
tial study, 100 randomly selected individual patient records,
including all semantic groups, were manually reviewed by
doctors to check for systemic errors and to identify inaccu-
racies. This process identified major errors in data trans-
formation that resulted in omissions and were subsequently
fixed through alterations to the data-flattening program to
account for idiosyncratic variations of the source index files
through the years.

After the data-flattening program was altered, the extrac-
tion software was unable to fully convert all the files because
of the size and complexity of the database. The flattening
software had to be specifically engineered to reduce the time
needed to extract the 100 patient’s data to just under an
hour for the same batch size.

Significant effort was employed to ensure data veracity
at every step. After data transformation, another error-
checking step using one hundred randomly selected patients

was performed to ensure that no packet losses or frame-short
errors occurred during transformation. The completed data
package was presented as a MS-SQL database for analysis.

3.3 Data Exploration and Curation
The nine semantic groups in the database contain many

features required for routine clinical operations, such as ward
transfer locations and duplicate demographic information.
We indexed the database according to diagnoses and rele-
vant fields we selected to optimize the size of the dataset
for analysis. The feature selection strategy is inclusive to
incorporate known as well as potentially unknown variables
in the T2DM and surgical readmission literature while re-
ducing the dataset size through elimination of duplicate, re-
dundant, or unfilled features.

In addition, there were many sparse features because of
changes in the data capture methodologies or creation of new
fields over the 10-year period. In situations where a sparse
data variable was critical to the analysis, statistical imputa-
tion techniques were employed to enable the representation
of the feature.

Next, medication lists were consolidated, and variations
in medication dictionaries were regularized according to the
hospital’s current pharmacopeia. To compare drug doses in
the analysis, a “standard dose equivalence” (SDE) list was
established, against which the various doses, frequencies and
duration of drugs used were calibrated.

To address the issue of changes in classification standards
(such as ICD-9 to ICD-10 transitions through the years [2],
or the absence of such coding in the data, a separate pro-
gram was developed by the NUS team to assign codes to di-
agnoses. Using the UMLS metathesaurus and a text-mining
engine, the program was able to assign ICD-10 codes to the
Concept Unit Identifier (CUI) level for analysis. There is
an ongoing effort to complete ICD code assignment to term
(LUI) and even-string level (SUI) concept identifiers, which
would greatly improve the granularity of the data field. That
process is eliminating incorrectly assigned diagnosis codes
due to spelling errors and semantic duplications (e.g., heart
failure and congestive cardiac failure) and regularizing ICD
coding standards. An example of a patient’s record is shown
in Fig. 1.

Anonymization of data is carried out at the data admin-
istrator level and governed according to institutional data
privacy polices. Structured identifiers (e.g., identity num-
bers, names) are assigned random numbers and with a re-
identification key is kept by the administrator. Any re-
identification needs are subject to review by the project IRB
and data committee. For unstructured identifiers, another
program developed by NUS researchers is used to remove pa-
tient identifiers in local medical text data (such as discharge
summaries and notes). The program is able to remove 99.8%
of identifiers and has been vigorously tested on a local med-
ical text lexicon to ensure complete removal of identifiers
without eliminating matched terms that are non-identifiers.

4. LONGITUDINAL ANALYSIS USING FAC-
TOR GRAPHS

Factor graphs provide an expressive representation of ran-
dom variables. Factor graphs can subsume both Bayesian
networks and Markov random fields (MRFs). While Bayesian
networks have been quite extensively used in probabilistic
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Figure 1: Course of one patient’s health over 10 years derived from the person’s electronic health records. Complications in blue are
those for which the patient was readmitted to the hospital, but not within 30 days of the previous discharge. Complications in red are
those for which the patient was readmitted to the hospital within 30 days of the previous discharge.

methods, their application in this domain is limited by their
implicit assumption of causality in observed events, which
might not be biologically substantiated.

A factor graph is a bipartite, undirected graph G = (V ;E)
that represents the relations among random variables, which
can be causal or non-causal relations. A vertex (node) v ∈ V
corresponds to a random variable or a factor function. An
undirected edge e ∈ E connects a factor function to a ran-
dom variable. In a factor graph representation, the relations
among the variables are explicitly specified by factor func-
tions f(Xi) that describe the relation among variables in
the set Xi. The undirected nature of the graph does not as-
sume causality in the observed events. The variable in this
work correspond to comorbids such as hypertension, chronic
renal failure (CRF), heart failure and anemia or any combi-
nation of them observed in hospital visits and are inferred
from the EHR of a population. A factor function in a factor
graph can be any function, e.g., a probability mass func-
tion or any real-valued function. In this work, we define the
factor function as an imply function comprising the current
set of complications and possible future complications. The
imply function I(a|b) finds the occurrences (and hence the
probability) of health complication(s) “b”, given the current
health complication(s) “a”, where [a, b] ∈ X. Conversely,
I(b|a) finds the occurrences (and hence the probability) of
health complication(s) “a”, given the current health compli-
cation(s) “b”, where [b, a] ∈ X.

If every patients’ course of health over 10 years is treated
as a graph, using our approach, the factor functions provide
an understanding of all pairwise relationships between pairs
of comorbids (diagnoses during visits) in the population as
shown in Fig. 2. For a given starting health complication as

Figure 2: For pairwise relationships between health complica-
tions expressed by factor functions established from population
data, we can trace paths from health complications in node “a”
to health complications in node “f” in two possible ways.

“a”, we can find all factor functions with current health com-
plication as “a” that was observed in the population. Using
a set of rules (for e.g., most occurring transitions, transi-
tion more likely in a specific race etc.), we can choose a
transition that is most relevant. We can build the future
health complications by recursively looking up factor func-
tions with likely current health complications. For a future
health complication“f”, if a patient is starting with diagnoses
“a”, two possible paths are a → b → d → f and a → e → f
as shown in Fig. 2.
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(a) An example test patient

(b) Establishing course of health using factor functions

Figure 3: Fig. (a) illustrates an example of a patient with a current diagnosis of diverticulosis as input to the SINGA-DRAGN tool,
which has precomputed the factor functions. Fig. (b) shows how one plausible course of health for the next two visits to the hospital
are computed based on the functions derived from Table. 2. The red line in Fig. (b) traverses the functions starting with the patient’s
current diagnoses.

From complications To complications Time
between
compli-
cations
(days)

Postural hypotension DVT 380
Anemia, ESRF Herpes zoster, hyper-

tension
100

Diverticulosis ESRF 27
Diverticulosis Hyperlipidemia 25
Diverticulosis Poorly controlled hy-

pertension
24

Diverticulosis Polyneuropathy 29

Table 1: An example factor function table for a patient

4.1 Computation Model: Training on Popula-
tion Data

The entire development of the tool was done in R, version
3.2.2. The tool was first trained on the population data us-
ing the training module of SINGA-DRAGN and then tested
with a patient’s current complication t forecast the indi-
vidual’s health. We trained SINGA-DRAGN with 12, 000
EHR of 100 T2DM patients (all of whom were older than
40) who underwent surgery at NUH during a 10-year period.
We used EHR of 10 other T2DM patients who underwent
surgery at NUH during the same 10-year period for testing.
For the initial development of the model, we chose the EHR
of those 100 patients because those EHR had been manually
verified by physicians at NUH.

First, each patient’s record was individually processed. A
data structure describing the factor functions in terms of
the relationship of the imply function and the time between
observed complications was output for each patient. We can
output of each those data structures as a table in a .CSV
file. As an illustration, an example factor function table
with a few descriptive diagnoses, derived from a patient’s
record is shown in Table. 1. (in the tool, the human-readable

From com-
plications

To
compli-
cations

Number
of
occur-
rences

Time
be-
tween
com-
plica-
tions
(days)

30-day
read-
mis-
sion
flag

Postural hy-
potension

DVT 1 380 Yes

Anaemia,
ESRF

Herpes
zoster,
hyper-
tension

2 100,56 No

Diverticulosis ESRF 3 3,11,7 Yes
Diverticulosis Hyperli-

pidemia
3 25, 28,

26
Yes

Diverticulosis Poorly
con-
trolled
hyper-
tension

3 24, 30,
25

Yes

Diverticulosis Polyne-
uropat-
hy

3 29, 25,
27

Yes

ESRF Chronic
renal
failure

4 3, 9, 4,
8

Yes

Table 2: An example of factor functions across patients

diagnoses are replaced by in ICD-9/ICD-10 codes). There
are multiple diagnoses of complications in some functions,
as these diagnoses were all made during the same visit to
the hospital. For example, the stacked diagnoses in each
hospital visit shown in Fig. 3(a).

Next, once the factor function tables have been computed
for all patients, a script looks for identical factor functions.
Identical factor functions are those that have the same di-
agnoses in the from complications and the same diagnoses
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in the to complications. We also count the occurrences of
identical factor functions and obtain the distribution of time
between complications during each occurrence. The training
module of SINGA-DRAGN then outputs the data-structure
for all the factor functions learned. Table. 2 shows few of
the factor functions. For the 100 patients that were used
to train the model, a total of 603, 475 factor functions were
computed. (We discuss computational performance issues
in Sec. 5.)

4.2 Patient-specific Forecast
We now describe the order in which we process a test

patient’s current comorbid being Diverticulosis, using the
factor functions inferred from the training cohort and tabu-
lated in Table. 2.

1. From Table.2, we extract all functions that have the
current comorbid of the patient. We subset Table.2
with from complications having Diverticulosis.

2. In Table.2, there are 4 entries with Diverticulosis in
the from from complications column and each of them
have occurred three times. Therefore, the likelihood of
each of these complications in the future is equal. We
believe that this particular observation is an artifact
of a sampling bias in a very small cohort. However,
we are unlikely to observe this uniform distribution of
likelihoods when our model is trained on the larger
cohort.

3. Since we have recorded the readmission intervals as-
sociating current comorbids to future diagnoses in all
their occurrences in the training cohort, we can com-
pute their statistical average. For example, for the
transition from Diverticulosis to Hyperlipidemia, the
average time to readmission is 27 days ({27 + 26 +
28}/3). These likelihoods will be different across dif-
ferent demographic factors when a larger cohort is pro-
cessed.

4. Next we establish plausible courses of health using the
computed factor functions from the Table.2, as shown
in Fig.3(b). As an example, this test patient currently
diagnosed with diverticulosis could later be diagnosed
with early-stage renal failure, and next be diagnosed
with chronic renal failure. The course of health fore-
cast is diverticulosis → early-stage renal failure →
chronic renal failure. We can not only provide the
average time to readmissions for every pair of events
in this patient’s course of health, but also raise warn-
ings if at least one patient during the training phase
was readmitted within 30 days with this pair of comor-
bids (diverticulosis ,early-stage renal failure) using the
30-day readmission flag is set to “Yes” in Table.2.

Although we learned over half a million factor functions
from the EHR associated with the 100 patients, for diver-
ticulosis, we needed only a few factor functions to find the
next possible health conditions of this patient. From this
patient’s actual medical record, we learned that the model
predicted all three actual complications correctly as shown
in Fig. 3(a). However, a new possible diagnosis was found,
which is early-stage renal failure (ESRF), which might im-
ply that the cohort of patients with similar characteristics
might suffer this complication in the future. We believe that

use of our approach would change the way physicians screen
patients who present with certain diseases and bundle inter-
ventions that are common to patients with certain complica-
tions. Currently in our tool, for each of the diagnoses in the
forecast, we recursively query the factor function obtained
from the training module and forecast complications in upto
five hospital visits in the future, as shown in Fig. 3(b).

For testing our model, we used ten new test patients (not
in the training cohort) to predict their next potential health
complication (diagnosis) given that they had Diverticulosis
as the current health condition. Only five of the ten patients
had Diverticulosis in their EHR as a diagnosis. In all these
five patients, the future diagnoses that were learned from the
training data was present in all of their diagnoses when they
visited the hospital after having Diverticulosis diagnosis in
their previous visit. Furthermore, in three among the five
test patients, their time to readmission was on average two
weeks more than the estimated time to readmission from the
factor functions and in the remaining two patients, the time
readmission was within a week of previous discharge. While
the accuracy of these forecast are promising and take this
feasibility study a step in the right direction, we are aware
of several other variables that were not considered while we
were training our model as well as biases introduced by a
small training cohort. We will discuss these factors in Sec. 5.

4.3 Population-specific Statistics
From an epidemiological perspective, it is interesting to

ask questions such as, “what complications are most preva-
lent diabetic patients in Singapore, which increases health-
care costs and adversely affect the population’s health?”.
Our model keeps count of the occurrences of complications
(which are weights of the factor functions in this work) as
shown in Table. 2. Further, we can query the model about
the health complications that can reveal potential precursors
and future complications based on population data.

The model is being developed to accommodate more train-
ing data, and eventually will scale to health-system level
populations. The validity of the model can be further tested
in other hospitals in Singapore. This will work better in-
form subgroups of patients about their future health com-
plications, and will provide more personalized information
to allow patients and physicians to make better decisions on
early intervention.

5. DISCUSSION AND FUTURE WORK
The goal of this work was to demonstrate the feasibil-

ity of a factor graph-based approach to analyzing longitudi-
nal data from electronic health records. Since the training
dataset used was very small compared to the actual diabetic
cohort in Singapore, our model has several limitations which
we discuss below and will address in our future work.

Performance and Scalability
The training module of SINGA-DRAGN was designed to al-
low for processing of multiple patients’ data in parallel based
on the threads available in the computing environment. On
a 2.7GHz Intel i7 processor with Mac OS X and an IBM
POWER8 machine with Linux, patient data were processed
eight patients at a time and each patient’s analysis took on
an average of 40 seconds with a standard deviation of 13
seconds. The greater the number of visits, the larger the
time to compute the factor function table for that partic-
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ular patient. The script that computed the factor function
table took roughly three minutes to coalesce the factor func-
tions from all patients. The total number of factor functions
was a little more than half a million. We anticipate that the
number of factor functions will grow when we incorporate
the entire cohort’s records.

In our future work, we intend to make SINGA-DRAGN
compatible with a MapReduce framework that can process
the patient’s data in parallel in the Map() procedure and
then combine the factor function tables into a composite
one with a Reduce() procedure. That will allow us to use
high-performance computing facilities, such as the Blue Wa-
ters supercomputer at the University of Illinois at Urbana-
Champaign, or the cluster facilities at the National Super-
computing Center, Singapore for executing the training mod-
ule.

Demographic Integration and Forecast Accu-
racy
For the 100 patients in this trial phase, so we would not
overfit the model because of sampling biases, we did not in-
corporate any demographic features. However, we plan to
incorporate demographic information such as age, gender,
and race as priors in our future work to improve prediction
and make the model very expressive. One challenge in EHR
analysis we mentioned in Sec. 2 was the need to manage
repeated diagnoses. Let us suppose a patient is currently
diagnosed with hypertension gets treated with medications
and the patient conforms to the same. Because of medica-
tion, let us assume that in a few subsequent hospital admis-
sions, hypertension is not listed among other diagnoses. It
is highly-likely that this same patient has other conditions
along with hypertension in the future, since aging introduces
tends to compound health complications. Then, a different
factor function that has other comorbids as part of the pa-
tients’ health will be used to forecast future health complica-
tions. If hypertension is the only diagnosis in this patients’
health after many years, then, the same factor function that
was used to forecast this patients’ health with this diagnosis
as the only input will be used, and therefore might be prone
to errors in forecast. We believe that our approach has the
ability to capture as many possible health conditions indi-
viduals can transition into, based on training data. At the
same time, we are also aware that we will not be able to learn
every possible transition between combination of comorbids
if they are not observed in the training cohort.

To forecast possible courses of health, we currently gener-
ate forecasts for up to three potential hospital visits in the
future. However, we intend to generate up to ten hospital
visits in the future and rank the plausible forecasts by their
likelihoods, using a combination of the occurrence of the fac-
tor functions along with the associated estimated times to
readmission and information on whether the comorbids are
associated with 30-day readmissions.

Cost-Benefit Analysis for Early Intervention
The current version of SINGA-DRAGN has provided physi-
cians with the first tool that quantitatively assesses com-
mon health complications that cause recurring hospital re-
admissions. Further, insights on which complications war-
rant surgeries and how the aftereffects of surgeries affect
the patients’ health are being gained with the trial version.
Currently, physicians in collaboration with hospital admin-

istration are assessing the downstream cost of care for these
common complications, and as well as the degradation in
quality of life resulting from associated surgeries. When
our future analyses encompass the entire cohort, we will be
able to identify a tipping point in an individual’s predicted
health, beyond which the patient’s aging can be improved
through preemptive clinical/surgical intervention.

6. CONCLUSION
This paper describes the success of a feasibility study in

a factor graph-based approach that was used to analyzing
data from electronic health records (EHR) to predict the
future health complications and patients’ expected time to
hospital readmission. Factor functions were learned from
over 10 years of EHR data for 100 diabetic patients who
have undergone surgeries at the National University Hospi-
tal, Singapore. Furthermore, we used the most frequently
occurring factor functions to identify comorbids that war-
rant hospital readmissions. Such information can inform
the physician/clinician about when to intervene in order to
maximize patients’ quality of life and minimize the cost of
their care.
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